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NOMENCLATURE

heat transfer coefficient

heat transferred to the test section

inside test tube wall temperature

outside test tube wall temperature

saturation temperature of test refrigerant

heat transfer surface area

mass flow rate of hot water

specific heat of water

test tube wall thickness

thermal conductivity of test section tube material

Nusselt Number in the presence of electric field

Nusselt Number at zero electric field (base case)

heat transfer coefficient (base case)

test section pressure (in-tube boiling)

refrigerant temperature before preheater (in-tube boiling)
specific enthalpy of refrigerant before preheater (in-tube boiling)
specific enthalpy of refrigerant after preheater (in-tube boiling)
heat transferred to refrigerant by preheater (in-tube boiling)
heat transferred to refrigerant by hot water (in-tube boiling)
refrigerant mass flow rate (in-tube boiling)

refrigerant quality after preheater and before test section (in-tube boiling)



1. ABSTRACT

The Electrohydrodynamic (EHD) is an active heat transfer augmentation technique which
utilizes the effect of secondary motions generated through the application of an electrostatic
potential to a dielectric fluid. The net result is better momentum and heat transfer between the
fluid and the heat transfer wall through destabilization of the thermal boundary layer and better
mixing of the fluid adjacent to the heat transfer surface. EHD enhancement of refrigerant
Irefrigerant oil mixtures heat transfer using the Electrohydrodynamic (EHD) technique is the
subject of athree-year experimental investigation in a project funded by the U. S. Department of
Energy, effective June 1, 1993. For the interim period between November 1992 and June 1993
when the DOE funds became available, the AirConditioning and Refrigeration Technology
Institute (ARTI) provided partial funding for our EHD research program with the aim of
accomplishing three major tasks. (1) conduct a comprehensive search of the literature on
EHD-enhanced, in-tube and external boiling heat transfer enhancement of aternate refrigerants;
(2) Design, fabricate, and instrument an in-tube, EHD-enhanced boiling/ condensation test rig and
perform preliminary testing of the setup; (3) conduct experiments and document new findings on
EHD-enhanced external boiling of alternate refrigerants/refrigerant mixtures in an existing pool
boiling test rig apparatus. Description of the takes performed and discussion of the results are
documented in this report.

2. WORK SCOPE

The work reported here was a six-month effort in which the major task was to design,
fabricate, and perform preliminary testing of a test rig suitable for testing of EHD-enhanced in-
tube boiling/condensation heat transfer of alternate refrigerants/refrigerant oil mixtures. The EHD
technique has demonstrated significant potential for heat transfer enhancement of two-phase flows
including the boiling/condensation of CFCs and alternate refrigerants. A detailed review of the
literature is documented in this report. As cited there, the previous work on in-tube, EHD-
enhanced boiling/condensation is limited to a study in Japan for a 97% R-123 and 3% R-134a
mixture [Yabe, 1991] for flow boiling in a straight-tube . The am of the current research was to
design and fabricate a forced convection boiling/condensation test rig such that both low and high
pressure aternate refrigerants can be tested. The objective was to obtain both average and local
heat transfer coefficients during evaporation of a pure refrigerant or a mixture of refrigerants and
lubricating oil. Before finalizing the test apparatus, the suggested design was faxed to the
industrial advisory members to seek their feedback and comments. Almost al the suggestions
received from the individual members have been reflected in the final design presented here. The
work scope in this project also included conducting additional experiments and documenting new
findings on pool boiling enhancement of alternate refrigerants in an existing external boiling test
rig capable of testing both low and high pressure refrigerants.



3. MAJOR ACCOMPLISHMENTS

The three major planned tasks for the project were all accomplished. These were: (1)
perform a comprehensive literature search on in-tube boiling of refrigerants/refrigerant oil
mixtures, (2) design, fabrication and preliminary testing of the in-tube, EHD enhanced
boiling/condensation test rig; and (3) perform additional experiments and document the new
findings on external boiling of alternate refrigerants/refrigerant oil mixtures. Description of these
tasks will now follow.

4. LITERATURE SURVEY

To evauate the potential of the various augmentation techniques for heat transfer
enhancement of alternate refrigerants and for comparison of the results with our base case
experiments (zero electric field condition) it was necessary to perform a careful review of the
earlier research work. Accordingly, a thorough search of the relevant literature was performed and
the results are documented in a tabular form in Appendices A and B for externa and in-tube
boiling, respectively. The pool boiling search was limited to the EHD-enhanced earlier studies. On
the other hand, for the in-tube boiling because the earlier EHD-enhanced work was limited to one
paper, the non-EHD papers of relevance to the current project were included in our search.

5. THE EXTERNAL BOILING TEST RIG
5. The Design Features

The overall schematic design of the test rig is shown in Figs. 1 and 2. A horizontal shell
and-tube heat exchanger was used as the EHD enhanced evaporator test section. A 1.87 m (74 in)
long stainless steel shell of .2 m (8 in) inside diameter designed to withstand pressures up to 20
bar (300 psi) is used as the test section so that both high and low pressure refrigerants could be
tested. While designing the test rig, two objectives were kept in mind. Firstly, the system was to
be made as simple as possible by having minimum number of joints and connections so as to
avoid the leakage problem at high pressures and, secondly, to make the experimental conditions
as close as possible to that of a practical heat exchanger. Therefore, the condenser section was put
inside the shell and hot water was used for heating of the test section.

The experimental apparatus consisted of two main sub-loops. a hot water loop which
provided heating of the refrigerant and a cold water loop which provided condensation of the
refrigerant. The hot water loop included a turbine flowmeter, a pump, an in-tube heater and the
"lo-finned" (19 fing/in), .019 m (.75 in) diameter copper test section tube. The in-tube heater,
employing a 3.175 mm (1/8 in) diameter and 914 mm (36 in) long stainless steel wire as one pole
and a.019 m (.75 in) copper tube as the other pole, provided the heating energy directly to the
water. This design reduced the required mass flow rate of the water circulating in the loop and
hence the time constant of the hot water loop. This aso helped to reduce the thermal losses to the
surroundings. The hot water loop was thermally well-insulated so that electrical power input
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in the test section.
The cold water loop consisted of a pressure attenuator, a rotameter and an externally enhanced,

.019 m (.75 in) diameter copper tube which served as the condenser for the system. Based on earlier
studies'™®, it was determined that the wire mesh electrode was an optimum configuration to use.
Accordingly, a stainless wire mesh in the arrangement shown in Fig. 3 was used As seen there, the wire
mesh had four mesh grids per linear inch with the wire diameter of 0.8 mm (0.03 in). The wire mesh
electrodes were supported concentrically with respect to the experimenta tube axis by teflon insulating
rings placed at intervals of 0.175 m (7 in). While installing the electrodes on the tube, proper care was
taken to ensure a gap of 3 mm (0.12 in) existed between the test section and the electrodes. Positive high
voltage was applied to the electrodes through a modified automobile spark plug whereas the shell and
tube were grounded.

The temperature measurements were all made using gauge 30, type "T" thermocouples. The wall
temperature of the tube was measured at six axial locations and, to avoid the interaction of thermocouple
wires with the high voltage electrodes, all the thermocouple leads were routed through the inside of the
copper tube. As shown in Fig. 2, seven thermocouples were placed axially to quantify the variation of
hot water temperature as it traveled along the tube. To facilitate degassing, and to ensure that the entire
pool was at the saturation temperature, the bottom half of the shell was heated with half ring strip
heaters. The pool temperature was measured using two thermocouples immersed in the liquid refrigerant.

There were four main independent parameters that were controlled in the apparatus. These were:
the test section heat flux determined by the setting of the variable transformer for in-tube heater, the
applied electric field potential which was controlled manually on the high voltage supply; pressure of the
pool which was regulated by the cold water flow rate in the condenser, and finally the hot water flow
rate which was controlled by adjusting the rotational speed of the pump.

Execution of an experimental run began by turning on the shell ring heaters, the in-tube heater,
the hot water pump and the cooling water loop. The high voltage supply was then turned on and adjusted
to dlightly less than the spark-over voltage. The hot water heater was next set at the highest heat flux by
adjusting the voltage applied to the heater. Pressure was maintained in the shell by controlling the
cooling water flow rate. A "steady state” condition was defined as when, for the given heater input, all
thermocouple signals in the hot water loop along the test section remained unchanged for about 30
minutes. Because of the presence of hysteresis, it was decided to collect the data only in the decreasing
heat flux order, for both with and without high voltage, so as to maintain consistency in the collected

data

5.11 Data Reduction
The average heat transfer coefficient was calculated using the defining equation, EqQ. (1):
Q
h= ___* 1
A(T,-Tu) )

where Q istherate of heat transfer to the test section tube, determined by the heater current and
voltage reading to the in-tube heater. T, is the average tube wall temperature determined by



Figure 3: Details of wire mesh electrode surrounding the hot water tube



taking the arithmetic mean of the six thermocouples installed on the test section wall. T is the
saturation temperature which was taken equal to the liquid pool temperature. Experiments were
conducted to obtain the heat transfer coefficient for R134a and R123 at 0 kV (the base case) as
well as for applied potentials of 5, 10, 15, and 20 kV to parametrize the effect of the applied field
potential. Brief presentation of selected results will be given in the following.

Assuming a constant thermal conductivity, the Nusselt ratio reduces to the corresponding
ratio of the heat transfer coefficients for the present experiments.

Nu _ h (2)

Nu, 1o

5111 Results

The externa boiling experiments included tests with both refrigerant R123 and R134a.
All tests were performed on 19 fins/in manufactured by Wolverine Inc., Decatur, Alabama. For
experiments with R-123 the effect of lubricating oil was also studied. The results so far obtained
for R-134a do not include the effect of lubricating oil, but this will be addressed in the
experiments planned for near future.

Attention is first brought to Figs. 4 and 5 where EHD heat transfer enhancement of R123
using a mesh type electrode is shown. These results were obtained with a smaller test section that
used resistive-heating as the source of heating. Details of this test section are given in [1]. From
Figs. 4and 5 it is seen that with the presence of the EHD effect over eight-fold enhancement in
heat transfer with the mesh type electrode can be obtained. Although the results are not shown
here, with the straight-wire electrode close to sevenfold enhancements were obtained for the
same operating conditions. As expected, the lubricant oil causes a degradation in the magnitude of
the heat transfer enhancements. However, a 2% oil concentration still enhancements of over
sevenfold for the mesh electrode and over five-fold for the straight wire electrode are achieved.

EHD-enhanced boiling of R-134a on a 19 fingin tube ("Turbo-A", manufactured by
Wolverine Tube, Inc.) similar to that of R123 is shown in Figs. 6to 8 for pressures of 590, 680,
and 790 kPa, respectively. As seen there, highest enhancements are obtained at the lowest heat
flux and lowest operating pressure. For the range of parameters experimented here, the highest
enhancement was observed at the pressure of 590 kPa and a super heat of 1.5 °C and field
potential of 20 kV. For these conditions the value of h, the heat transfer coefficient, is over 9
times higher than that of a zero field case -- therefore, an enhancement of over 800% for h.

Effects of various parameters in the trends observed in Figs. 4 - 8 can be explained as
follows. When the pressure is low, the electric force can agitate the flow more effectively due to
the fact that at high pressures, molecules have less freedom to move around and, therefore,
electric charges will have a less pronounced effect on promoting the boiling dynamics. With
respect to the effect of heat flux, at a higher heat flux the boiling dynamics is high enough and the
EHD induced agitation effects will have a less pronounced role. As for the effect of applied
electric potential a higher field magnitude implies stronger electrical body forces and, therefore,
higher EHD-induced effects in promoting the bubble break-up and increasing the bubble
departure speeds which collectively lead to higher heat transfer rates.
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Fig. 5 EHD-enhanced external boiling of R-123 with wire mesh electrode at 2% oil
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For R134a additional experiments are needed to confirm the trends of the preliminary
data reported here. Also, effect of lubricating oil and experiments with refrigerant mixtures are in

the future planned work.

5.1V Technical Problems Encountered

A number of technical problems were encountered during the course of fabricating and
testing of the set up. The leakage of high pressure fluid from the system was taken care of by
charging the system first with nitrogen gas and doing a meticulous search until al fluid leakages
were removed. Also fabrication and proper instalation of the electrodes was a critical job, since
short circuits could disrupt the process of testing. Different wires were examined in the process of
optimizing the electrodes. R-134a has shown a complicated electrical behavior. The current for a
given voltage is variable during a course of time for different pressures or heat fluxes. More data
needs to be obtained to be able to assess the electrical behavior of R-134a in terms of
current-voltage relation. Realizing that R-134a is a new refrigerant, little information is known on
its heat transfer performance. This limited comparison of the data with the base case zero electric

field condition.

5.V Future Work

The data reported here for R-134a are preliminary. More experiments are needed to verify
the trends observed and the physics involved. Long term effects and design/operational aspects of
using R-134a in the presence of EHD field will have to be investigated as well. This will include
examining issues such as electrode life, fouling, refrigerant degradation and material
compatibility. These and additional experiments will be performed utilizing the funds available
through an industrial consortium of sponsoring members.
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6. THE IN-TUBE BOILING TEST RIG

6. TheTest Rig Design

The overall schematic diagram of the test apparatus is shown in Fig. 9. The test section
was designed to withstand up to 500 psi pressure so that both low and high pressure refrigerants
can be tested. The setup consists of three distinct flow loops : (1) the refrigerant flow loop which
provides refrigerant flow through the test section; (2) a hot water loop which provides heating
energy to the test section; and (3) a heat pump loop, which condenses and subcools the refrigerant
entering the test section.

The refrigerant loop includes a hermetic oil-free pump, a drier filter, a precision coriolis
mass flowmeter, an electrical preheater, the test section, a condenser unit and an accumulator.
The refrigerant flow rate can be controlled by the pump in the range of 20 kg/nt.s to 600 kg/nt.s
and the quality at which the refrigerant enters the test section can be controlled by the electric
preheater. Presently, the system pressure is controlled manually by regulating the expansion
vave of heat pump loop. However, efforts are in progress to install a stepper motor with
feedback control loop to perform automatic control of the pressure in the test section.

The test section is a horizontally mounted tube-intube heat exchanger. The inner tube of
9.4 mm (0.37 in) inside diameter and 1.22 m (4 ft) long carries the test refrigerant while the outer
tube of 19 mm (0.75 in) inside diameter carries the hot water. The test tube wall is 1.65 mm
(0.065 in) thick so that it can withstand high pressures (up to 500 psi). To minimize the axial heat
losses through the test section, a stainless steel tube, grade SA304, is used. The outer tube is
made of plexiglass. The test section instrumentation allows to operate up to 35 kW/nt of heat
flux. The exit end of the test section has a sight glass of ailmost the same inside diameter as the
test section in order to observe the flow pattern. Swagelok connections are used on both ends of
the test section so as to facilitate quick and easy replacements of the electrodes and the test
section. The schematic of the test section is shown in the Fig. 10.

The initial electrode design to be used in the experiments is a simple coaxia cylindrical
type of 3 mm (0.118 in) diameter. This electrode is supported inside the test section by teflon
gpacers at intervals of 300 mm (1 ft). Positive potential is applied to the electrode through a
modified automotive spark plug whereas the tube is grounded. Future experiments will include
study of the effect of electrode geometry and orientation on the nature and magnitude of heat
transfer enhancement rates.

Also shown in Fig. 10 is the location of thermocouples in the test rig. Wall temperatures
are measured using copper-constantan thermocouples directly welded on the outside of the tube.
Temperatures are measured at 4 axia locations at equal intervals of 300 mm (11.8 in). At each
axia location, thermocouples are placed at 4 circumferential positions at an interval of 90
degrees from the bottom point of the tube.

Heat to the test section is supplied by hot water which in turn is heated using an electrica
resistance rod heater. To reduce the time constant, which is proportional to the total volume of
hot water in the loop (in the present setup it is just 750 ml), the heater is placed axialy inside the
hot water tube (See Fig. 9). This also helps us to quantify heat input to the water more accurately.
The entire hot water loop is thermally insulated. To ensure thorough mixing of water

13
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inside the test section, water enters and leaves the test section tangentially. Heater power is
controlled using a variable transformer. Thermocouples are placed at 5 axia locations in the
water side to measure hot water temperature and at each axial location 3 thermocouples are
placed circumferentially at an interval of 120 degrees from the top point of the tube. Locations of
the thermocouples are shown in Fig. 10.

Evaporating pressure at the inlet and exit is measured using a pressure transducer and a
differential pressure transducer, so that accurate local pressure and pressure drop measurements
can be performed. The inlet and exit of the test section in the refrigeration loop is equipped with a
thermocouple to provide comparison with the saturation temperature inferred from the pressure
measurement.

There are three main independent variables that can be controlled in the current test
section design: (i) heat flux, determined by the hot water heater power; (ii) refrigerant flow rate,
adjusted manually by changing input voltage to the hermetic oil-free pump and (iii) the inlet
vapor quality, controlled by regulating heat input in the preheater.

A typica experimental run begins by first turning on the refrigerant pump and fixing the
mass flux at the desired value. Next, the heat pump loop is switched on and is followed by the hot
water pump. The hot water heater is then turned on and set at the required heat flux. The
refrigerant always enters the preheater in a subcooled condition. Hence to fix the quality before
the refrigerant enters the test section, the preheater is then switched on and is set at the proper
level. A "steady state” condition for the test rig is defined as when al the temperature and
pressure signals remain unchanged for 15 minutes.

6.11 Data Reduction

Data acquisition is performed with a personal computer, a multiplexer and computer-
interfaced multimeters. All the temperatures, pressure, flow rate, heater power, preheater power,
EHD voltage and current signals are acquired by the computer. Data reduction calculations
pertaining to the heat transfer coefficient, quality, the mass flow rate, etc. are aso performed by
the same computer. The heat transfer coefficient calculation is based on the following defining

equation:

' Q
h =
A (T, - To) *

in which Q is the energy transferred to the test section, Ty is the average inside wall temperature
calculated using outside wall temperature and Ts refers to the saturation temperature at average

test section pressure. The quantity Q is taken to be equal to the hot water heater input when the
average heat transfer coefficient over the length of tube is desired. However, when the local heat
transfer coefficient is of interest, Q is obtained from the energy balance on the water side between

any two axia positions:

16



Q=m,ec, (T,; - T,2) (4)

Here, Ty, and Ty, 2 represent the average temperature of water side thermocouples at any
two consecutive axia locations. Ty, the inside tube wall temperature is calculated by assuming
that heat is conducted only radially from outside to the inside of tube as:

T,,,=T,,-%ﬁ o ®

where, Ty, is the average of the 4 circumferential wall thermocouples at an axial position, 0X is
the test tube wall thickness, k is the thermal conductivity of the tube material and A is the inside

surface area of the tube.
Quality of the refrigerant coming out of the test section will be calculated by performing

an energy balance, 1st law analysis, on the test section (see Fig. 11). The quality at which the
refrigerant is entering the test section is obtained by using the following equations:

¢ =f(Ty,P) (6)

Fig.11
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CQrs

m,

(7)

e, =¢ +

X, =f(P,e) (8)

Here it is assumed that the pressure drop across the preheater is negligible. Similarly, quality at
which refrigerants are coming out of the test section can be obtained once Qrs, heat input to the
test section, is known.

While determining the average heat transfer coefficients, the heat input to the test section
can also be quantified based on the hot water mass flow rate and the temperature drop. But
uncertainty in the heat input measurement using this method was found to be in the range of
15.6% to +28.2% (depending on the heat flux rate) whereas that of the electrical power input to
the intube heater is between +0.6% and +£1.53%. Uncertainty is much lower in the later case
mainly because accuracy in measurement of voltage and current (electrical heater power input) is
much better as compared to the corresponding temperature measurement. The maximum
uncertainty in the measurement of heat transfer coefficient is +11.34% whereas for quality is
+16.87% and both occurs at lowest hesat flux.

6.111 The Preliminary Results

To verify the test section design and the experimental procedure, the low pressure R123
refrigerant was used for preliminary runs. Fig. 12 shows the variation of EHD discharge current
with time for the freshly charged refrigerant at fixed pressure, heat flux, mass velocity and applied
EHD voltage. Initially, EHD current increases and reaches a maximum value of around 0.25 mA
and then starts decreasing slowly as time passes by. This happens because for the freshly charged
refrigerant more current is required initialy for the polarization of charges to take place in the
refrigerant. It should be aso noted that for this particular case EHD power consumption is less
than one Watt.

Fig. 13 shows the variation of EHD current with mass velocity of refrigerant. It can be
seen that EHD current increases with an increase in mass velocity. This is because as the mass
velocity is increased the quality of the refrigerant in the test section decreases for a given heat
flux which leads to less vapor flow. Since conductivity of liquid R123 is more than vapor, the
current is high for higher mass velocities.

6.1V Technical Problems Encountered

The following problems wee encountered during the fabrication and testing of the in-tube
boiling apparatus.

1. Initially, when the setup was started, it was difficult to maintain a steady mass flux of

the refrigerant. This happened because the refrigerant pump being new, took some time to reach
its operating characteristics curve. Now we are able to maintain mass flux within £2% of the
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flow.
2. Problems were encountered with calibration of the multiplexer boards used for data

acquisition of the temperature signals. The Resistance Temperature Detector (RTD) present on the
multiplexer board for cold junction compensation did not give a consistent value. Accordingly, it
has been decided to use ice bath as our reference junction instead of RTD. Since thermocouples
are very susceptible to noise pickup, each signa is acquired 17 times and an arithmetical average
is taken after regjecting the lowest and highest data. Also a moving average is taken to reduce the
influence of noise in the data.

3. It was difficult to maintain test section pressure by controlling the expansion vave
manually. Therefore, we are in the process of making a stepper motor feedback control to take

care of this problem.
4. It took some effort to find al the leaks in the system and come up with a totally leak-

free test loop apparatus.

6.V Future Plans

As planned, the ARTI sponsored test rigs described here will be used to conduct EHD-
enhanced intube flow boiling experiments on aternate refrigerants/ refrigerant oil mixtures. The
U.S. department of energy will support these efforts, effective June 1,1993. Concurrent to the flow
boiling experiments, EHD-enhanced pool boiling alternate refrigerants on selected tube
geometries will also be studied. The funds provided by the DOE have been augmented by
contributions from four industrial sponsoring members. The sponsoring members will each have
one representative in the five-member advisory board (four industrial member plus DOE project
manager). Collective suggestions of the members will determine the direction of the research and
the tasks to be performed in the current project. Following is the tentative time schedule for the
planned tasks in the next quarter for the in-tube boiling experiments.

June l- July 15 Conduct Wilson Plot experiments using R-123 as the testing fluid.
July 15 - Aug 15 Conduct EHD-coupled experiments using R-123 to test the apparatus.
Aug 15- Aug 31 Perform preliminary EHD experiments with R-134a.

Sept | - Sept 15 First Quarterly Report preparation for the U.S. DOE.
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7. SUMMARY

All of the mgjor tasks planned in the current project were accomplished. A comprehensive
search of the literature on EHD boiling heat transfer enhancement of alternate refrigerants was
conducted and the tabulated results are included in Appendices A and B. Design, fabricating, and
testing of the intube, EHD-enhanced boiling test rig was completed. Preliminary data on the
"I-V" characteristics of the electrode system were presented in this report. The experiments on
intube boiling of R-123 have just begun, using a single conventional wire-type electrode. Similar
experiments are planned for R-134a. Future experiments will include testing of refrigerant

mixtures.
The data collected on externa boiling of R-123 and R-134a suggest an excellent feasibility

of the EHD technique for boiling heat transfer enhancement of these two refrigerants. Up to
nine-fold heat transfer enhancements for R134a and sevenfold for R123 have been obtained

Based on the pool boiling results, we expect that R134a will respond favorably to the EHD

enhancement in the flow boiling regime as well.
Upon completion of this ARTI-sponsored effort, as of June 1, 1993 the intube and

external boiling projects will be funded jointly by grants from the U.S. Department of Energy and
a consortium of industrial members. An advisory committee (composed of representatives of the
industrial sponsors) and the DOE Project manager will provide feedback and direction to this

research.

8. ACKNOWLEDGMENTS

This research was conducted under ARTI Contract No. 655-51700. The Program Manager
for this project was Glenn C. Hourahan.

9. COMPLIANCE WITH AGREEMENT

No modifications or deviations from the technical performance of work as described in the
contract agreement was necessary during this reporting period.

10. PRINCIPAL INVESTIGATOR EFFORT

Dr. Michael Ohadi was the Principal Investigator and director for this project. He devoted
atotal of 190 hours to this project toward its completion.

21



Appendix A

Tabulated Literature Survey for
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Pool Boiling
Literature Survey

Source

Liquid Used Test Section Enhancement Technique Test Condition Remarks
1. Allen, P. [A]) R114 finned tube EHD copper wire mesh cylinder max enhancement is 10 fold
max voltage: 30 kV
DC, AC
2. Asch, V. [A2) R113 2 circular plates EHD circular plate max enhancement is § fold
DC, AC
3. Blachowicz, R. [B1) benzene vertical glass tube EHD disc type max enhancement is 2 fold
max voltage: 20 kV
DC
4, Cooper, P.[C1) R114 finned tube within a EHD copper Wire mesh cylinder max enhancement is up to
concentric shell max voltage: 30 kV 10 fold
DC,AC
h for finned tubes is
5. Hahne, E. [H1] Ri1 copper fins . . hd smaller than palin tubes
19fpi and 26 fpi
fin height of 1.52 atq< 1 KwmK
in height of 1.52mm in nucleate boiling regime,
h from single finned tubes
is greater than plain tubes.
6. Johnson, R.(J1} good dielectrics i EHD b an enalytical study for a boiling
(not a specific onc) flat surface.




transfer surface
7 mm separstion between
each wire.

Source Liquid Used Test Section Enhancement Technique Test Condition Remarks
7. Kawahira, H. [K1] Ril smooth EHD P: near atmosphere the stronger the clectric
2%wt oil OD 22.4 mm wire insulators placed T:25°C field, the smaller the no.
cquidistant axially hf:28-1.7 of bubbles,
71Snun apart. applied volt: 30kV h is 2-3 times without
negative DC application of electric
positive DC field.
AC deterioration due to
oil contamination was
not observed.
8. Lovenguth, R. [L1] R113, R21, a glass container EHD electrically conducting max enhancement is 3 fold
chloroform, a platinum wire heater Pyrex tube
& carbon tetrachloride max-voltage: 15 kV
nonuniform DC
9. Markels, M. [M2] deionized water concentric cylinders EHD tube max enhancement is 2 fold
max voltage: 5 kV, 60 Hz
AC
{10. Markels, M. [M3) isopropy! alcohol horizontal tube EHD aluminum tank max enhancement is 4 fold
max voltage: 10 kV, 60 Hz
DC, AC
T 1. Memory, SB. [M1] R114 smooth 26fpi GEWA-K hf:mnox 100 in natural convective
0.3,10 mt% oil copper 26fpi GEWA-T T:22C region, oil has no effect
OD 1591 mm 26fpi GEWA-YX onh.
SS cartridge heater Turbo-B for pure R114, incipient
OD 6.35 mm Thermoexcel-E hf for structured surfaces
High Flux is less than that of smooth
and finned tubes.
12. Ogata, ). [O1] R11 copper A EHD P: 105kPa enhancement ratio was 8.5
ethanol 2% wt cartridge heater electrode wires hf: 5.8 times that without electric
0D 22.4 mm T:.25."C field.
3 mm away from heat positive DC generated bubbles pushed

against the injection plate
and moved on it before
migrating through electric
field.




Source Liquid Used Test Section Enhancement Technique Test Condition Remarks
13. Ogata, J. (02} silicon oil & transparent conductive EHD parallel glass plates break up of bubbles were
cthylalcohol mix horizontal parallel plates max voltage: 20 kV investigated.
DC
14. Ohadi, M.M. [03) R123 wire-cylinder EHD tube-wire max enhancement is 5 fold
: max voltage: 25 kV
DC
15. Olinger, J. [04} distilled, deionized flate surface EHD flat grid electrode
walter DC, AC
16. Rutkowski, J. [R1] nitrogen cylinder EHD coaxial & parsllel cylinder max enhancement is 2 fold
max voltage: 50 Hz
AC
17. Takano, K. [T2) water, cthanol, R113, horizontal plate electrode EHD stainless steel & brass
R10, & cyclohexane over a liquid surface circular discs
max voltage: 30 kV
DC
18. Thome, J.{T1] 95% pentane/ copper GEWA.-TX P:2.07 bar GEWA-TX had boiling
5% tetradecene Diam 12.7 mm 18.8fpi 6.9 bar performance of 4-10
. 9. times that of ordinary
20% n-pentane cartridge heater h: 2-200 smooth tube.
20% n-heptane
20% cyclohexane
35% p-nylene
5% 1-tetradecene
19. Uemera, M. {U1) R113 a flat plate under EHD stainless steel wire mesh max enhancement is 14 fold

atmospheric pressure

max voltage: 35 kV
DC

nucleate and film boiling
investigated.




FAN)

Source Liquid Used Test Section Enhancement Technique Test Condition Remarks
20. Wanniarchchi, AS.[W3] R114 smooth copper Porous coating ht: 5.95 wih porows coing, hls
OD 15.9 mm T:2.2°C 6.7C nucleate boiling occurred
457.2mm long . at lower hf and superheats
porous coated copper nickel compared to smooth tube.
presence of oil reduced h by
heater 35% in porous coated tube.
max power 100W
21. Webb, R.L.{W1] R22,R11, R12, 165 mm long copper standard fin T:27°C hfor R123 and R1}4a is
R123,R134a 0OD19.05 mm ) TU-B fin hf:2-70 approximately equal to
1D9.53 mm W-SE fin R11 and R12 respectively
cartridge heater 26-40 fpi at 26fpi.
500 W 2 internal axial grooves
R22,R11, R12, r 1024fins/m integral fin o h at given hf increases
22. Webb,RL. {W2) RIZIR1Ma ODN7.519.1 mm GEWA g T: 4.44 Cand 26.7°C w/ sat T for all tube
’ 1D 9.53 mm TX-19 h: 3-50 geometries
cartridge heater GEWA SE h for R123 and R134a are
500 w Turbo-B within 10% of values
alt have specially made for R11 and R12.
9.53mm inside bore
23. Yabe, A. [ Y1} Furonsorubu AE horizontal plate EHD ring electrode max enhancement is 100
(96% w.w. R113 max voltage: 25 kV fold for convective heat transfer
& 4% w.w. ethanol) DC and 2 fold for boiling
24. Zharzholianni, A. [Z1] acetone (polar) cylindrical & planar EHD plate electrode max enhancement for:
benzene max voltage: 35 kV acetone is 2.14 fold
n-pentane DC benzene is 1.6 fold

n-pentane is 1.2 fold




Nomenclature

h: heat transfer coefficient
hf or q: heat flux (kW/ni K]
P: Pressure

T: Temperature

SS: Stainless Steel

OD: Outer diameter

ID: Inner diameter

fpi: fins per inch
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Forced Convection Boiling (In-Tube)
Literature Survey 1986-1992

Source Liquid Used Tubc used Enhancement Technique

Test condition Remarks

T:20-5'C

1. Damiandis, C. [D3) RIV4 smooth lo-lin application of 10 kV eliminated
ID 17.9mm fin height .Smm hysteresis.
OD19.1mm fin pitch B8mm kecping bubbles attached o
lo fin brass EHD . surfaces incresed turbulence and
Thermo-excel mixing.
ID 14.97mm enhancement ratio decreased with
OD 19.05mm increasing heat Nux.
EHD produced 2-3 times more
heat transfer than the lo-fin tubes.
2. Eckels.S.J. (El R134a smooth 3.67m long none mf:125-400 for single phase flow,
R12 ID 8mm hi:-- h for R134a is 33% higher
OD 9.25mm x:10-90% than R22.
P: 0.35-0.49MPa for evaporation , h for R134a
T:S-ISOC is higher than R22 by
35-45%.
3. Eckels, S.J. (E2) RI2 smooth 3.67m long microfin mf: 125-400 for R134a, as mass flux increased
R1)4a 1D 8mm 1Pspiral angle x:5-13% three times the heat transfer
OD 9.52mm 60 fins avg T: 5-15C cocflicient increased by 50 % for
microfin 3.67m long fin height .2mm microfin and 100% for smooth tube.
1D max 8.72mm penalty factor decreased as mass flux
OD 9.52mm increased,
4. Ha, Samchul [H5] R12 copper 1.2m long microfin mf:25-100 suppression of foaming and & highly
oil 3GS ID 8 mm 60 fins hf:5-10 oil-rich film around the perimeter of
0-5% OD 9.5mm .18mm height P: 0.32MPa the tube,
18%spiral angle x:10-60% liquid film vaporization inhibited by
' oil concentration
5. Hambraeus, K. [H4] R134a smooth copper Im long none mf:60-240 R134a showed a higher heat
synthetic ID 12mm hf: 2-10 transfer coefficient than R22 for 0.5
oil| EXP-0275] x:25% mass %oil content.
0-25mass% P:2.3 bars for oil-free Best heat transfer coefficient was at
mixture 2 and 4 kW/m'®




Source

Liquid Used

Tube used

Enhancement Technique

Test condition

Remarks

6. Jensen, MK, {J5)

7. Jung, D.S. ct al. [J1)

8.Jung, D.S. et al. {J2)

9. Kedzierski, M.A. [K8]

10. Khanpara, J.C. [K11]

RIN3

R22 and
0, 21,60,89% R22
in R22/R152a

mixture

23,47,77% R22 in
R22/R114 mixture

R11, R123

.55% ak. in

R123a

.2% alk. in

Ri123a

.0005 mass fraction
lubricant

R113

S5304 wnal heated and
unhcated length 1.727m

ID 8.10mm
OD 9.53mm
(ventical tube)

SS 4m long
1D 0.9cm
OD 0.95cm.

SS 4m long
inner ID .9cm
OD 95cm

quartz tube
1D 9mm
OD 12mm

copper 1.21m long
inner ID 8.78mm

OD 9.5mm
outer ID 19.1mm

3 types ol wwist
tape wbes

1apc Iwist ratios of
3.94,8.94,13.92.
tape widths were on
average 7.85mm

nonc

none

five micron polish

9 types of microfins
fin heights .1-.19mm
60-70 fins o o
spiral angle of 8-25

mf:120-1600kg/m s
hl:0-50

x:0-61%
P:276.551.827 kPa

mf=250-720kg/m s

hl=10,17.26,36.45kW/m®

x=up to 95%

outlet P=330kPa for R12

as heat flux increascs tape
twist ratio has less effect on
heat transfer coellicient.

no circumflerential wall temp
variation observed.

360kPa for R152a

mf:250-720
hf:10,17,26,36.45

x: no greater than 90%

P:400kPa for R22

260kPa for R114

q: 15-30
Re: 0-9500

mf:197-594
hf:10.72-53.65
x:15-85%
P:312-351 kPa
T:764C

Re: 5,000-11,000

suppression of nucleate boiling
leads to temperature reduction of
h as x increases.

for Reynold'’s number below 9500,

h of R123 was 22% greater than R11.
addition of lubricant caused more
sites 1o become active in generating
bubbles.

experiment showed enhancement
factors of 1.3-2.0

pressure drop increased at most by
factor of 1.8

round peaked microfin with 70 fins
had the best performance.




1% oil

Source Liquid Used Tube used Enhancement Technique Test condition Remarks
1. Murata, K. ctal. {M1) R1L, R114 smooth copper none mf:100,200,300 binary mixture h << pure
and 734mm long q:10,20,30 refrigerant h in the boiling
0.25.50,75 % mass inner 1D 10.3im x:10-90% dominant region.
fraction R11 in OD 12.7mm P:2 bars
R11/R114
12. Reid, R S. et al. [R2} RII3 copper ID8.50mm  ——  High fin 10° High fin Microfin twisted tape has enhancement factor of
OD 9.525mm mf:398-409 mi:234-601 1.5
copper ID8.712mm —— Microfin 17.5° hf:19.994-27.518 hf:15.094-39.638  (inned tubes has enhancement factor of
OD 9.525mm x:0-70% x:0-65% 1.1-2.8
SS ID 10.92mm Twisted tape P:337kPa P:332-340kPa microlin tubes have better performance
OD 12.7mm ratio than high fin.
5 othcr variations of Low Fin performance ratio of 1.1 for low fin
microfin and high mf:233-237 and .5 for high fin
fin also used hf:12.528-21.491
x:0-70%
P:337kxPa
13. Ross, H.D. et al. [R4] R13B1 and R152a 2 apparatus tested none mf:150-1200 circumferential variation inh
0.18%w1-0.833w1% 1.58 2.7m long hf:10-95 makes modelling difficult.
R13B1in R13B1/R152a inner ID .9 cm x:0-100% suppression of nucleate boiling
OD .95 cm P:1.2-7bars done by lowering pressure,
2.SS .6m long 1/Xn= 3-35
inner ID 9em Re=3000-50,000
OD .95cm Pr=34
14, Sami, S. M. et al.|S2) R22, R12 inner and outer copper double fluted inner mir:50-90 increase in R114 decelerates
40, 60, 80% R22 in inner ID .0212m tube (4 flutes) x: 25% s . . nucleate boiling
R22/R1M4 OD .0226m Re:98x10-22x10
70, 80, 90% R22 in outer ID.0508m P: 180-600kPa
R22/R152a




Source

Liquid Uscd

Tube used

Enhancement Technique

Test condition

Remarks

15. Sami, S. M. ct al |S3)

16. Sami, S. M. et al.[S5)

17. Sami, S. M. ct al. S8])

18. Sami, S. M. et al.[S10]

-

20. Schlager, L.M. [S14]

R22/R11t4
1% oil

R22 & RS20

40, 60, 80%R22 in
R22/R114
70.8090%R22 in
R22/R152a

R12
R134a
R22

R22
40,60,80% R22
in R22/R114

19, Schlager, L. M. et al. (S7) R22

R22

naphthenic base
mineral oil
0-5%

copper 1.2 m long

inncer 1D 17.5 mm
OD 28.6 mm

outer ID 32.3mm

inncr and outer copper
3.5m long
inner 1D .0212m

0D .0226m
outer ID .0508m

cquivalent diameter .024m
1.2 m long

equivalent diameter .024m
1.2m long

copper 3.7m long
inner ID 11.7mm
OD 12.7mm

2 tests
1. smooth
1D 8.0mm
0D 9.52mm
2. microfin
ID 8.72mm
OD 9.52mm

double Aluted inner
tube

double Mued inncr
tube (4 flutes)

doublc Nuied inner
tube

double fluted

microfin 60-70 fins
height of .15mm-.30mm
angles 15-25 degree

microfins
height: 0.2mm
18spiral angle

mf:180-290
hf:7-24

x:10-60%
P:570kPa for R22

517kPa for 80%:R22/R114
457kPa for 60%R22/R114
417kPa for 40%R22/R114

mfr:50-90

x: 25%

P: 180-600kPa

Re: 9.8x10°-2.2x 10’

mf:181,242 288

hi:7-24

x:10-60%

P:365kPa for R-12,R134a
570k Pa for R22

mi:181.242, 288
hf:7-24

x:10-60%
P:570kPa for R22

mf:75-300
hf:100-300
x:15-85%
P:0.5-0.6 MPa

mf:25-400

hf: not given
x:15-85%
P:O.5-9.6MP|
T:0-6C

most influcntial fluid properties -
are therma! conductivity and heat of
cvaporation

With a higher concentration of R1524
there is a slight increase in h.

at high qualitics, two-phase boiling
heat transfer coefficient depends on
mass flow rate

experiments showed enhancement
factors of 3.0-3.3

enhancement more significant in
R134a than in R12

heat transfer enhancement factor
depends on mixture concentration

experiments showed enhancement
factors of 1.5 t0 2.2 and penalty
factors of 1,2-1.35

small quantities of oil improve heat
transfer.

enthancement factor of smooth tube
was 1.36 compared to 1.11 at small
oil quantities.

increasing mass flux, diminishes oil
enhancement.




Source Liquid Used Tubc used Enhancement Technique Test condition Remarks

21. Schlager, L.M.[S17) R22 3.67 m long Lo-fin mf:125-400 only oil concentrations of 1.5% or
150 SUS naphthenic ID9.5mm x:15-85% lower lcad to heat ransfer augmentation
mincral oil T.3C w/lo-fin tubes.
0-5% for smooth tube, enhancement [actor is

1.36 for 2.5 % oil concentration.

22, Takamatsu, H. et al. [T1] R22,R114 inner copper 4.8m long intcrnal spiral grooves mf:77-347 q and h increase until dryout point
25,50,75% bulk ID 8.32mm with depth of .55mm q:.9-3.1 kW
molar [raction of OD 9.52mm 60 grooves lead angle x:16-29%
R22 in outer: polycarbonate resin 30 degrees P:0.06-.7MPa

23. Wattelet, J. M. {W4}

24. Yabe, A. [Y8]

25. Yoshida, S. et al. [Y1]

R22/R114

R134a
R12

RI123
R13a

R22 Suniso
0il 0,1,3,6%
mass fraction

ID 16mm

smooth copper 2.43m long
ID 10.21mm

nonc

inner: Cupronickel 3.75 m long EHD

ID 10 mm
outer : acrylic resin

2 tests

1.5 4m long
ID 10.6mm
OD 13.8mm

2.5S 3m long
ID 15.4mm
OD 19mm

none

m{:100, 300, 500

hi:5-30

x:20-60%

P: 350 kPa for R134a
. 363kPa for R12

T:5C

mf:33-66

mf{:100-300
hf:5-30
P: 0.59MPa

R134a had 25% more heat
transfer coefficient than R12
in annular flow regime.

h did not show dependence on
heat flux except at low
qualities(x=20%) and high
heat flux(20-30 kW/m ).

with EHD, heat transfer improves by 3
times.

EHD is effective in low mass flux ngiorJ
where pressure drop is very small.
pressure loss depended on total amount
of heat transferred.

pressure loss does not depend on the
strength of the electric field.

at low mass velocity (<100kglnf 8) oil
content of 3 and 6% improves h.




Nomenclature

mir:mass flow rate (g/s]

G or mf:mass flux [kglm’s]

q or hf: heat flux (kW/ni® ]

x: quality

P: pressure of inlet unless stated otherwise

T: saturation temperature

h:heat transfer coefficient

heat enhancement factor= heat transfer coefficicnt (augmented)

heat transfer coefficient (smooth tube)

performance ratio= heat enhancement factor
penalty factor

penalty factor=pressure drop (augmented tube)
pressure drop(smooth tube)

SS: Stainless steel
1D:inner diameter
OD:outer diameter
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