Chilled Beams

What are they? How do they benefit my system? Why is certification important?

Learning Objectives

- Chilled beams types
- > How an active chilled beam works
- Why a chilled beam might be beneficial
- Rating/testing of chilled beams
- > Certification of chilled beams

> Active Chilled Beams

 An air induction and diffusion device which introduces conditioned air for the purposes of temperature and/or humidity control. Primary Air is delivered through a series of Nozzles, which induces and conditions Secondary Air through a unit mounted coil.

Passive Chilled Beams

 A cooled element or coil, fixed in, above or under a ceiling that sensibly cools through natural convection using buoyancy driven air flow.

Photo source: ASHRAE Journal Article: Cooling With Less Air Using Underfloor Air Distribution and Chilled Beams

Multi-service Chilled Beam

 A chilled beam that incorporates space services other than cooling such as lighting. This type of chilled beam is usually customized to meet specific project requirements.

> Room Air Induction Unit

A type of Active Chilled Beam that requires at least 1.5 in.
 H₂O of inlet static pressure to operate.

Image credit: http://www.ebaircontrol.com/image/img 24.jpg

How Does an Active Chilled Beam (ACB) Work?

- > Typically ceiling-mounted induction diffusers that deliver cooling or heating via water circulated through a coil mounted in the induced air path.
- ➤ Water is cooled to approximately 57° F to 62° F and is pumped to the chilled beam units.
 - Adjustments to water temperatures, supply air rate and temperature, and static pressure may all contribute gains in efficiency and, ultimately, lower energy consumption.

Image credit: http://ahrinet.org/site/S 127/295/Modules/AHRI/Articles

How Does an Active Chilled Beam (ACB) Work?

- Utilize supply air plenums and induction nozzles which makes heat transfer more effective.
 - Mixture of primary air and conditioned room air is slightly warmer than all air systems resulting in higher airflow rates.
 - Attention should be given to proper room air distribution and its effect on localized velocities and temperatures within the occupied zone.

Image credit: ASHRAE Journal Designing Chilled Beams for Thermal Comfort

Why Use an Active Chilled Beam (ACB)?

- > They may help to lower building operating costs
- > They provide quiet operation
- > They have no electrical power requirements
- ➤ They may help overcome tight floor-to-floor space requirements

Why Use an Active Chilled Beam (ACB)?

Potential applications for active chilled beams include universities, historic buildings, government buildings, laboratories, open-plan office buildings, meeting rooms, libraries, and hospitals.

Building Types and Percentage of Total Building types Using Chilled Beams (2012 to 2014*)			
Educational	68%		
Commercial	10%		
Government	7%		
Community	5%		
Medical	4%		
Civil	2%		
Military	2%		
Residential	1%		
Industrial	1%		
*2014 data was annualized based on 11 months of data from Reed Insight Data			

Source: Reed Construction Data

How Do You Verify a Chilled Beam's Performance?

- ➤ RP-1629, "Testing and Modeling Energy Performance of Active *Chilled Beam* Systems".
 - Currently underway to verify the performance of chilled beams and provide guidance for simulation tools
 - Research sponsored by ASHRAE TC 5.3
 - Tuesday, January 27, 2015 from 1:00 PM-3:30 PM in Monroe

How Do You Verify a Chilled Beam's Performance?

- ➤ ASHRAE RP-1383 will yield a developed module for radiative/convective systems for simulation. The results of this project, once available, will be analyzed for application to active chilled beam systems and inclusion in this study.
 - An active study sponsored by TC 6.5
 - Monday, January 26, 2015 from 2:15 PM-4:15 PM in LaSalle 1

How Do You Verify a Chilled Beam's Performance?

- ➤ EN 15116, Ventilation in buildings Chilled beams Testing and rating of active chilled beams
 - Most current edition is from 2008
- ➤ Nordtest VVS 078, Ceiling cooling systems: Cooling capacity
 - Most current edition is from 1999
- ➤ Recently approved ASHRAE Standard 200, Methods of Testing Chilled Beams
 - Anticipated publication in February 2015

Basic differences between the standards

	EN 15116	ASHRAE 200	VVS 078
Thermal Testing	✓	✓	✓
Air throw Testing		✓	
Induction Ratio		✓	
Acoustical Testing		✓	

AHRI's New Active Chilled Beam Certification Program

- ➤ In early 2015, AHRI launched the ACB certification program
- ➤ The program uses ASHRAE Standard 200 as the method of test
- ➤ AHRI Standards 1240 (I-P) and 1241 (SI) provide performance metrics and rating conditions
 - Available for free on the AHRI website, <u>www.ahrinet.org</u>

Why Choose AHRI-Certified Products

- ➤ Foremost globally recognized HVACR & water heating certification program
- Voluntary program
- > Qualification is lengthy and rigorous
- > 400+ participants across all program
 - Including 58 International Licensees from 16 countries
- > 2,500 independent laboratory tests annually
- > Accredited by Standards Council of Canada (SCC)

Why You Can Trust AHRI

- > AHRI contracts with a third-party lab to conduct all tests
- Products are randomly selected for testing
- Operation Manuals dictate strict procedure for administration of the certification program
- > AHRI Directory is recognized by government agencies
 - EPA (Environmental Protection Agency)
 - DOE (U.S. Department of Energy)
 - FTC (Federal Trade Commission)
 - NRCan (Natural Resources Canada)
 - CEC (California Energy Commission)

Qualification Process

> Application Submittals

- Application is separately applied to each Certification
 Program
- Ratings provided for all models (Certify All)

> Testing

- 20% Basic Model Groups are tested
- Conducted by a 3rd party lab (not AHRI)

Third-party Verification

- ➤ Manufacturer performance ratings verified by a third-party laboratory
- > Holds manufacturers accountable
- Provides consumers with confidence in performance of the product

Rated

Conforms to standard
 Subject to rigorous and continuous testing
 Manufacturers' performance ratings independently measured
 Third-party verified
 All products within program scope certified
 Provides marketplace clarity

AHRI-Certified®

- Conforms to standard
- Subject to rigorous and continuous testing
- Manufacturers' performance ratings independently measured
- Third-party verified
- All products within program scope certified
- Provides marketplace clarity

AHRI Standards 1240 (I-P) and 1241 (SI)

- Written by members of the AHRI Chilled Beams Product Section
 - Air System Components
 - Carrier Corporation
 - Halton Group Americas
 - Mestek, Inc.
 - Metal Industries, Inc.
 - Price Industries, Inc.
 - Swegon
 - Trane
 - Trox USA, Inc.

<u>AHRI Standard 1240 – Important Terms</u>

- Primary Air Air delivered through the Nozzle(s) of an Active Chilled Beam
- Secondary Air Air induced through coil of an Active Chilled Beam
- ➤ Nozzle An air flow opening in the Plenum which discharges a jet of Primary Air via the Air-induction Process.

Photo source: ASHRAE Journal Article Efficient Space Humidity Control With Active Chilled Beam Systems

AHRI Standard 1240 – Important Terms

- Plenum An air compartment under positive pressure, and consisting of inlet(s) and Nozzle(s) for Primary Air. Also referred to as a Plenum chamber
- ➤ Induction Ratio The ratio of the volumetric flow rate of Secondary Air to Primary Air

AHRI Standard 1240 – Standard Ratings

Primary Air

- flow rate, cfm (Standard Air)
- temperature, Isothermal to Reference Air Temperature
- pressure drop, 0.5 inches H2O

Water coil

- capacity, reported, Btu/h
- Entering water temperature, cooling: 57°F
- Leaving water temperature, reported value °F
- Water flow rate, gpm, adjusted to achieve mean water temperature differential of 14.5°F relative to reference air temperature
- Water pressure drop, reported, inches H₂O

<u>AHRI Standard 1240 – Standard Ratings</u>

- Supply Air throw distance, 100 fpm
 - Supply Air at isothermal conditions relative to the test room to be determined using ANSI/ASHRAE Standard 70.
 - Air volume to be at manufacturer supplied value for primary air.
- ➤ Sound generation (combined radiated and discharge sound) by Octave Bands 2 to 7.
 - Air volume to be at manufacturer's supplied value for primary air.
- Induced air flow rate, cfm

ACB Certification Program

- Certify all within 3 years of program launch for products sold within the intended market
- **Exclusions**
 - Active Chilled Beam units employing volatile-refrigerant coils
 - Active Chilled Beam units employing steam coils
 - Passive chilled beam units
 - Multi-service active chilled beams

<u>ACB Certification Program – Certified Data</u>

> Water

- Flow Rate, L/s [gpm], adjusted to achieve mean water temperature differential of 8.0°C [14.4 °F] relative to reference air temperature
- Pressure Drop, kPa [inches w.c.]
- Coil Capacity, W, [Btu/h]
- Primary Air Flow Rate, L/s [cfm]
- ➤ Sound Generation (combined radiated and discharge sound) by octave bands 2 to 7

ACB Certification Program – Certified Data

- ➤ Induced air flow rate, L/s [cfm], calculated in accordance with ASHRAE 200
- > All data is at the following conditions:
 - Standard Air Condition for cooling capacity test:
 - Primary Air Temperature, 24 °C [75°F] Isothermal to reference air temperature
 - Primary Air Pressure Drop, 125 Pa [0.5 inches w.c.]
 - Entering Water Temperature,: 14.0°C [57.2°F]
 - Leaving Water Temperature, °C [°F]

Conclusion

- Chilled Beams may be the right solution for your project.
- There will soon be an ASHRAE Method of Testing available.
- > AHRI has launched a certification program to verify the performance of chilled beams.
- Once manufacturers have completed the application process for the certification program, certified data will be available on ahridirectory.org

Questions?

we make life better™